Драйверы для светодиодов – все что нужно знать домашнему мастеру. Бесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих ламп Схемотехника драйверов светодиодных светильников

Лидирующую позицию среди наиболее эффективных источников искусственного света занимают сегодня светодиоды. Это во многом является заслугой качественных источников питания для них. При работе совместно с правильно подобранным драйвером, светодиод длительно сохранит устойчивую яркость света, а срок службы светодиода окажется очень-очень долгим, измеряемым десятками тысяч часов.

Таким образом, правильно подобранный драйвер для светодиодов — залог долгой и надежной работы источника света. И в этой статье мы постараемся раскрыть тему того, как правильно выбрать драйвер для светодиода, на что обратить внимание, и какие вообще они бывают.

Драйвером для светодиодов называют стабилизированный источник питания постоянного напряжения или постоянного тока. Вообще, изначально, светодиодный драйвер — это , но сегодня даже источники постоянного напряжения для светодиодов называют светодиодными драйверами. То есть можно сказать, что главное условие — это стабильные характеристики питания постоянным током.

Электронное устройство (по сути — стабилизированный импульсный преобразователь) подбирается под необходимую нагрузку, будь то набор отдельных светодиодов, собранных в последовательную цепочку, или параллельный набор таких цепочек, либо может быть лента или вообще один мощный светодиод.

Стабилизированный источник питания постоянного напряжения хорошо подойдет , LED-линеек, или для запитки набора из нескольких мощных светодиодов, соединенных по одному параллельно, — то есть когда номинальное напряжение светодиодной нагрузки точно известно, и достаточно только подобрать блок питания на номинальное напряжение при соответствующей максимальной мощности.

Обычно это не вызывает проблем, например: 10 светодиодов на напряжение 12 вольт, по 10 ватт каждый, - потребуют 100 ваттный блок питания на 12 вольт, рассчитанный на максимальный ток в 8,3 ампера. Останется подрегулировать напряжение на выходе при помощи регулировочного резистора сбоку, - и готово.

Для более сложных светодиодных сборок, особенно когда соединяется несколько светодиодов последовательно, необходим не просто блок питания со стабилизированным выходным напряжением, а полноценный светодиодный драйвер — электронное устройство со стабилизированным выходным током. Здесь ток является главным параметром, а напряжение питания светодиодной сборки может автоматически варьироваться в определенных пределах.

Для ровного свечения светодиодной сборки, необходимо обеспечить номинальный ток через все кристаллы, однако падение напряжения на кристаллах может у разных светодиодов отличаться (поскольку немного различаются ВАХ каждого из светодиодов в сборке), - поэтому напряжение не будет на каждом светодиоде одним и тем же, а вот ток должен быть одинаковым.

Светодиодные драйверы выпускаются в основном на питание от сети 220 вольт или от бортовой сети автомобиля 12 вольт. Выходные параметры драйвера указываются в виде диапазона напряжений и номинального тока.

Например, драйвер с выходом на 40-50 вольт, 600 мА позволит подключить последовательно четыре 12 вольтовых светодиода мощностью по 5-7 ватт. На каждом светодиоде упадет приблизительно по 12 вольт, ток через последовательную цепочку составит ровно по 600 мА, при этом напряжение 48 вольт попадает в рабочий диапазон драйвера.

Драйвер для светодиодов со стабилизированным током — это универсальный блок питания для светодиодных сборок, причем эффективность его получается довольно высокой и вот почему.

Мощность светодиодной сборки — критерий важный, но чем обусловлена эта мощность нагрузки? Если бы ток был не стабилизированным, то значительная часть мощности рассеялась бы на выравнивающих резисторах сборки, то есть КПД оказался бы низким. Но с драйвером, обладающим стабилизацией по току, выравнивающие резисторы не нужны, вот и КПД источника света получится в результате очень высоким.

Драйверы разных производителей отличаются между собой выходной мощностью, классом защиты и применяемой элементной базой. Как правило, в основе — , со стабилизацией выхода по току и с защитой от короткого замыкания и перегрузки.

Питание от сети переменного тока 220 вольт или постоянного тока с напряжением 12 вольт. Самые простые компактные драйверы с низковольтным питанием могут быть выполнены на одной универсальной микросхеме, но надежность их, про причине упрощения, ниже. Тем не менее, такие решения популярны в автотюнинге.

Выбирая драйвер для светодиодов следует понимать, что применение резисторов не спасает от помех, как и применение упрощенных схем с гасящими конденсаторами. Любые скачки напряжения проходят через резисторы и конденсаторы, и нелинейная ВАХ светодиода обязательно отразится в виде скачка тока через кристалл, а это вредно для полупроводника. Линейные стабилизаторы — тоже не лучший вариант в плане защищенности от помех, к тому же эффективность таких решений ниже.

Лучше всего, если точное количество, мощность, и схема включения светодиодов будут заранее известны, и все светодиоды сборки будут одинаковой модели и из одной партии. Затем выбирают драйвер.

На корпусе обязательно указывается диапазон входных напряжений, выходных напряжений, номинальный ток. Исходя из этих параметров выбирают драйвер. Обратите внимание на класс защиты корпуса.

Для исследовательских задач подходят, например, бескорпусные светодиодные драйверы, такие модели широко представлены сегодня на рынке. Если потребуется поместить изделие в корпус, то корпус может быть изготовлен пользователем самостоятельно.

Андрей Повный

Для применения светодиодов в качестве источников освещения обычно требуется специализированный драйвер. Но бывает так, что нужного драйвера под рукой нет, а требуется организовать подсветку, например, в автомобиле, или протестировать светодиод на яркость свечения. В этом случае можно сделать для светодиодов своими руками.

Как сделать драйвер для светодиодов

В приведенных ниже схемах используются самые распространенные элементы, которые можно приобрести в любом радиомагазине. При сборке не требуется специальное оборудование, — все необходимые инструменты находятся в широком доступе. Несмотря на это, при аккуратном подходе устройства работают достаточно долго и не сильно уступают коммерческим образцам.

Необходимые материалы и инструменты

Для того, чтобы собрать самодельный драйвер, потребуются:

  • Паяльник мощностью 25-40 Вт. Можно использовать и большей мощности, но при этом возрастает опасность перегрева элементов и выхода их из строя. Лучше всего использовать паяльник с керамическим нагревателем и необгораемым жалом, т.к. обычное медное жало довольно быстро окисляется, и его приходится чистить.
  • Флюс для пайки (канифоль, глицерин, ФКЭТ, и т.д.). Желательно использовать именно нейтральный флюс, — в отличие от активных флюсов (ортофосфорная и соляная кислоты, хлористый цинк и др.), он со временем не окисляет контакты и менее токсичен. Вне зависимости от используемого флюса после сборки устройства его лучше отмыть с помощью спирта. Для активных флюсов эта процедура является обязательной, для нейтральных — в меньшей степени.
  • Припой. Наиболее распространенным является легкоплавкий оловянно-свинцовый припой ПОС-61. Бессвинцовые припои менее вредны при вдыхании паров во время пайки, но обладают более высокой температурой плавления при меньшей текучести и склонностью к деградации шва со временем.
  • Небольшие плоскогубцы для сгибания выводов.
  • Кусачки или бокорезы для обкусывания длинных концов выводов и проводов.
  • Монтажные провода в изоляции. Лучше всего подойдут многожильные медные провода сечением от 0.35 до 1 мм2.
  • Мультиметр для контроля напряжения в узловых точках.
  • Изолента или термоусадочная трубка.
  • Небольшая макетная плата из стеклотекстолита. Достаточно будет платы размерами 60х40 мм.

Макетная плата из текстолита для быстрого монтажа

Схема простого драйвера для светодиода 1 Вт

Одна из самых простых схем для питания мощного светодиода представлена на рисунке ниже:

Как видно, помимо светодиода в нее входят всего 4 элемента: 2 транзистора и 2 резистора.

В роли регулятора тока, проходящего через led, здесь выступает мощный полевой n-канальный транзистор VT2. Резистор R2 определяет максимальный ток, проходящий через светодиод, а также работает в качестве датчика тока для транзистора VT1 в цепи обратной связи.

Чем больший ток проходит через VT2, тем большее напряжение падает на R2, соответственно VT1 открывается и понижает напряжение на затворе VT2, тем самым уменьшая ток светодиода. Таким образом достигается стабилизация выходного тока.

Питание схемы осуществляется от источника постоянного напряжения 9 — 12 В, ток не менее 500 мА. Входное напряжение должно быть минимум на 1-2 В больше падения напряжения на светодиоде.

Резистор R2 должен рассеивать мощность 1-2 Вт, в зависимости от требуемого тока и питающего напряжения. Транзистор VT2 – n-канальный, рассчитанный на ток не менее 500 мА: IRF530, IRFZ48, IRFZ44N. VT1 – любой маломощный биполярный npn: 2N3904, 2N5088, 2N2222, BC547 и т.д. R1 – мощностью 0.125 — 0.25 Вт сопротивлением 100 кОм.

Ввиду малого количества элементов, сборку можно производить навесным монтажом:

Еще одна простая схема драйвера на основе линейного управляемого стабилизатора напряжения LM317:

Здесь входное напряжение может быть до 35 В. Сопротивление резистора можно рассчитать по формуле:

где I – сила тока в амперах.

В этой схеме на LM317 будет рассеиваться значительная мощность при большой разнице между питающим напряжением и падением на светодиоде. Поэтому ее придется разместить на небольшом . Резистор также должен быть рассчитан на мощность не менее 2 Вт.

Более наглядно эта схема рассмотрена в следующем видео:

Здесь показано, как подключить мощный светодиод, используя аккумуляторы напряжением около 8 В. При падении напряжения на LED около 6 В разница получается небольшая, и микросхема нагревается несильно, поэтому можно обойтись и без радиатора.

Обратите внимание, что при большой разнице между напряжением питания и падением на LED необходимо ставить микросхему на теплоотвод.

Схема мощного драйвера с входом ШИМ

Ниже показана схема для питания мощных светодиодов:

Драйвер построен на сдвоенном компараторе LM393. Сама схема представляет собой buck-converter, то есть импульсный понижающий преобразователь напряжения.

Особенности драйвера

  • Напряжение питания: 5 — 24 В, постоянное;
  • Выходной ток: до 1 А, регулируемый;
  • Выходная мощность: до 18 Вт;
  • Защита от КЗ по выходу;
  • Возможность управления яркостью при помощи внешнего ШИМ сигнала (интересно будет почитать, как ).

Принцип действия

Резистор R1 с диодом D1 образуют источник опорного напряжения около 0.7 В, которое дополнительно регулируется переменным резистором VR1. Резисторы R10 и R11 служат датчиками тока для компаратора. Как только напряжение на них превысит опорное, компаратор закроется, закрывая таким образом пару транзисторов Q1 и Q2, а те, в свою очередь, закроют транзистор Q3. Однако индуктор L1 в этот момент стремится возобновить прохождение тока, поэтому ток будет протекать до тех пор, пока напряжение на R10 и R11 не станет меньше опорного, и компаратор снова не откроет транзистор Q3.

Пара Q1 и Q2 выступает в качестве буфера между выходом компаратора и затвором Q3. Это защищает схему от ложных срабатываний из-за наводок на затворе Q3, и стабилизирует ее работу.

Вторая часть компаратора (IC1 2/2) используется для дополнительной регулировки яркости при помощи ШИМ. Для этого управляющий сигнал подается на вход PWM: при подаче логических уровней ТТЛ (+5 и 0 В) схема будет открывать и закрывать Q3. Максимальная частота сигнала на входе PWM — порядка 2 КГц. Также этот вход можно использовать для включения и отключения устройства при помощи пульта ДУ.

D3 представляет собой диод Шоттки, рассчитанный на ток до 1 А. Если не удастся найти именно диод Шоттки, можно использовать импульсный диод, например FR107, но выходная мощность тогда несколько снизится.

Максимальный ток на выходе настраивается подбором R2 и включением или исключением R11. Так можно получить следующие значения:

  • 350 мА (LED мощностью 1 Вт): R2=10K, R11 отключен,
  • 700 мА (3 Вт): R2=10K, R11 подключен, номинал 1 Ом,
  • 1А (5Вт): R2=2,7K, R11 подключен, номинал 1 Ом.

В более узких пределах регулировка производится переменным резистором и ШИМ – сигналом.

Сборка и настройка драйвера

Монтаж компонентов драйвера производится на макетной плате. Сначала устанавливается микросхема LM393, затем самые маленькие компоненты: конденсаторы, резисторы, диоды. Потом ставятся транзисторы, и в последнюю очередь переменный резистор.

Размещать элементы на плате лучше таким образом, чтобы минимизировать расстояние между соединяемыми выводами и использовать как можно меньше проводов в качестве перемычек.

При соединении важно соблюдать полярность подключения диодов и распиновку транзисторов, которую можно найти в техническом описании на эти компоненты. Также диоды можно в режиме измерения сопротивления: в прямом направлении прибор покажет значение порядка 500-600 Ом.

Для питания схемы можно использовать внешний источник постоянного напряжения 5-24 В или аккумуляторы. У батареек 6F22 («крона») и других слишком маленькая емкость, поэтому их применение нецелесообразно при использовании мощных LED.

После сборки нужно подстроить выходной ток. Для этого на выход припаиваются светодиоды, а движок VR1 устанавливается в крайнее нижнее по схеме положение (проверяется мультиметром в режиме «прозвонки»). Далее на вход подаем питающее напряжение, и вращением ручки VR1 добиваемся требуемой яркости свечения.

Список элементов:

Заключение

Первые две из рассмотренных схем очень просты в изготовлении, но они не обеспечивают защиты от короткого замыкания и обладают довольно низким КПД. Для долговременного использования рекомендуется третья схема на LM393, поскольку она лишена этих недостатков и обладает более широкими возможностями по регулировке выходной мощности.

Стандартная схема драйвера светодиодов РТ4115 представлена на рисунке ниже:

Напряжение питания должно быть по-крайней мере на 1.5-2 вольта выше, чем суммарное напряжение на светодиодах. Соответственно, в диапазоне питающих напряжений от 6 до 30 вольт, к драйверу можно подключить от 1 до 7-8 светодиодов.

Максимальное напряжение питания микросхемы 45 В , но работа в таком режиме не гарантируется (лучше обратите внимание на аналогичную микросхему ).

Ток через светодиоды имеет треугольную форму с максимальным отклонением от среднего значения ±15%. Средний ток через светодиоды задается резистором и рассчитывается по формуле:

I LED = 0.1 / R

Минимально допустимое значение R = 0.082 Ом, что соответствует максимальному току 1.2 А.

Отклонение тока через светодиод от расчетного не превышает 5%, при условии монтажа резистора R с максимальным отклонением от номинала 1%.

Итак, для включения светодиода на постоянную яркость вывод DIM оставляем висеть в воздухе (он внутри PT4115 подтянут к уровню 5В). При этом ток на выходе определяется исключительно сопротивлением R.

Если между выводом DIM и "землей" включить конденсатор, мы получим эффект плавного зажигания светодиодов. Время выхода на максимальную яркость будет зависеть от емкости конденсатора, чем она больше, тем дольше будет разгораться светильник.

Для справки: каждый нанофарад емкости увеличивает время включения на 0.8 мс.

Если же требуется сделать диммируемый драйвер для светодиодов с регулировкой яркости от 0 до 100%, то можно прибегнуть к одному из двух способов:

  1. Первый способ предполагает подачу на вход DIM постоянного напряжения в диапазоне от 0 до 6В. При этом регулировка яркости от 0 до 100% осуществляется при напряжении на выводе DIM от 0.5 до 2.5 вольт. Увеличение напряжения выше 2.5 В (и вплоть до 6 В) никак не влияет на ток через светодиоды (яркость не меняется). Напротив, уменьшение напряжения до уровня 0.3В или ниже приводит к отключению схемы и переводу ее в режим ожидания (ток потребления при этом падает до 95 мкА). Таким образом, можно эффективно управлять работой драйвера без снятия напряжения питания.
  2. Второй способ подразумевает подачу сигнала с широтно-импульсного преобразователя с выходной частотой 100-20000 Гц, яркость будет определяться коэффициентом заполнения (скважностью импульсов). Например, если высокий уровень будет держаться 1/4 часть периода, а низкий уровень, соответственно, 3/4, то это будет соответствовать уровню яркости в 25% от максимума. Надо понимать, что частота работы драйвера определяется индуктивностью дросселя и ни коем образом не зависит от частоты диммирования.

Схема драйвера светодиодов PT4115 с регулятором яркости постоянным напряжением представлена на рисунке ниже:

Такая схема регулировки яркости светодиодов прекрасно работает благодаря тому, что внутри микросхемы вывод DIM "подтянут" к шине 5В через резистор сопротивлением 200 кОм. Поэтому, когда ползунок потенциометра находится в крайнем нижнем положении, образуется делитель напряжения 200 + 200 кОм и на выводе DIM формируется потенциал 5/2=2.5В, что соответствует 100%-ой яркости.

Как работает схема

В первый момент времени, при подаче входного напряжения, ток через R и L равен нулю и встроенный в микросхему выходной ключ открыт. Ток через светодиоды начинает плавно нарастать. Скорость нарастания тока зависит от величины индуктивности и напряжения питания. Внутрисхемный компаратор сравнивает потенциалы до и после резистора R и, как только разница составит 115 мВ, на его выходе появляется низкий уровень, который закрывает выходной ключ.

Благодаря запасенной в индуктивности энергии, ток через светодиоды не исчезает мгновенно, а начинает плавно уменьшаться. Постепенно уменьшается и падение напряжения на резисторе R. Как только оно достигнет величины в 85 мВ, компаратор снова выдаст сигнал на открытие выходного ключа. И весь цикл повторяется сначала.

Если необходимо уменьшить размах пульсаций тока через светодиоды, допускается подключить конденсатор параллельно светодиодам. Чем больше будет его емкость, тем сильнее будет сглажена треугольная форма тока через светодиоды и тем более она станет похожа на синусоидальную. Конденсатор не влияет на рабочую частоту или эффективность работы драйвера, но увеличивает время установления заданного тока через светодиод.

Важные нюансы сборки

Важным элементом схемы является конденсатор C1. Он не просто сглаживает пульсации, но и компенсирует энергию, накопленную в катушке индуктивности в момент закрытия выходного ключа. Без C1 запасенная в дросселе энергия поступит через диод Шоттки на шину питания и может спровоцировать пробой микросхемы. Поэтому если включить драйвер без шунтирующего питание конденсатора, микросхема почти гарантированно накроется. И чем больше индуктивность дросселя, тем больше шансов спалить микруху.

Минимальная емкость конденсатора C1 - 4.7 мкФ (а при питании схемы пульсирующим напряжением после диодного моста - не менее 100 мкФ).

Конденсатор должен располагаться как можно ближе к микросхеме и иметь как можно более низкое значение ESR (т.е. танталовые кондеры приветствуются).

Также очень важно ответственно подойти к выбору диода. Он должен иметь малое прямое падение напряжения, короткое время восстановления во время переключения и стабильность параметров при повышении температуры p-n перехода, чтобы не допустить увеличения тока утечки.

В принципе, можно взять и обычный диод, но лучше всего под эти требования подходят диоды Шоттки. Например, STPS2H100A в SMD-исполнении (прямое напряжение 0.65V, обратное - 100V, ток в импульсе до 75А, рабочая температура до 156°C) или FR103 в корпусе DO-41 (обратное напряжение до 200V, ток до 30А, температура до 150°C). Очень неплохо себя показали распространенные SS34 , которые можно надергать из старых плат или купить целую пачку за 90 рублей .

Индуктивность дросселя зависит от выходного тока (см. таблицу ниже). Неверно выбранное значение индуктивности может привести к увеличению рассеиваемой на микросхеме мощности и выходу за пределы рабочего температурного режима.

При перегреве выше 160°C микросхема автоматически выключится и будет находиться в выключенном состоянии до тех пор пока не остынет до 140°C, после чего запустится автоматически.

Несмотря на имеющиеся табличные данные, допускается монтаж катушки с отклонением индуктивности в большую сторону от номинала. При этом изменяется КПД всей схемы, но она остается работоспособной.

Дроссель можно взять фабричный, а можно сделать своими руками из ферритового кольца от сгоревшей материнской платы и провода ПЭЛ-0,35.

Если важна максимальная автономность устройства (переносные светильники, фонари), то, в целях повышения эффективности схемы, имеет смысл потратить время на тщательный подбор дросселя. На малых токах индуктивность должна быть больше, чтобы минимизировать погрешности управления током, возникающие из-за задержки при переключении транзистора.

Дроссель должен располагаться как можно ближе к выводу SW, в идеале - подключен напрямую к нему.

И, наконец, самый прецизионный элемент схемы драйвера светодиода - резистор R. Как уже было сказано, его минимальное значение равно 0,082 Ом, что соответствует току 1,2 А.

К сожалению, не всегда удается найти резистор подходящего номинала, поэтому самое время вспомнить формулы расчета эквивалентного сопротивления при последовательном и параллельном включении резисторов:

  • R посл = R 1 +R 2 +…+R n ;
  • R пар = (R 1 xR 2) / (R 1 +R 2).

Комбинируя различные способы включения, можно получить требуемое сопротивление из нескольких имеющихся под рукой резисторов.

Важно так развести плату, чтобы ток диода Шоттки не протекал по дорожке между R и VIN, так как это может привести к погрешностям измерения тока нагрузки.

Низкая стоимость, высокая надежность и стабильность характеристик драйвера на РТ4115 способствует его повсеместному использованию в светодиодных лампах. Практически каждая вторая 12-вольтовая LED-лампа с цоколем MR16 собрана на PT4115 (или СL6808).

Сопротивление токозадающего резистора (в Омах) рассчитывается точно по такой же формуле:

R = 0.1 / I LED [A]

Типовая схема включения выглядит так:

Как видите, все очень похоже на схему светодиодной лампы с драйвером на РТ4515. Описание работы, уровни сигналов, особенности используемых элементов и компоновки печатной платы точно такие же как у , поэтому повторяться не имеет смысла.

CL6807 продают по 12 руб/шт, надо только смотреть, чтоб не подсунули паяные (рекомендую брать ).

SN3350

SN3350 - очередная недорогая микросхема для светодиодных драйверов (13 руб/штучка). Является практически полным аналогом PT4115 с той лишь разницей, что напряжение питания может лежать в диапазоне от 6 до 40 вольт, а максимальный выходной ток ограничен 750 миллиамперами (длительный ток не должен превышать 700 мА).

Как и все вышеописанные микросхемы, SN3350 представляет собой импульсный step-down преобразователь с функцией стабилизации выходного тока. Как обычно, ток в нагрузке (а в нашем случае в роли нагрузки выступают один или несколько светодиодов) задается сопротивлением резистора R:

R = 0.1 / I LED

Чтобы не превысить значение максимального выходного тока, сопротивление R не должно быть ниже 0.15 Ом.

Микросхема выпускается в двух корпусах: SOT23-5 (максимум 350 мА) и SOT89-5 (700 мА).

Как обычно, подавая постоянное напряжение на вывод ADJ, мы превращаем схему в простейший регулируемый драйвер для светодиодов.

Особенностью данной микросхемы является несколько иной диапазон регулировки: от 25% (0.3В) до 100% (1.2В). При снижении потенциала на выводе ADJ до 0.2В, микросхема переходит в спящий режим с потреблением в районе 60 мкА.

Типовая схема включения:

Остальные подробности смотрите в спецификации на микросхему (pdf-файл).

ZXLD1350

Не смотря на то, что эта микросхема является очередным клоном , некоторые отличия в технических характеристиках не допускают их прямую замену друг на друга.

Вот главные отличия:

  • микросхема стартует уже при 4.8В, но на нормальный режим работы выходит только при напряжении питания от 7 до 30 Вольт (на полсекунды допускается подавать до 40В);
  • максимальный ток нагрузки - 350 мА;
  • сопротивление выходного ключа в открытом состоянии - 1.5 - 2 Ома;
  • изменением потенциала на выводе ADJ от 0.3 до 2.5В можно менять выходной ток (яркость светодиода) в диапазоне от 25 до 200%. При напряжении 0.2В в течении, как минимум, 100 мкс, драйвер переходит в спящий режим с низким потреблением энергопотреблением (порядка 15-20 мкА);
  • если регулировка осуществляется ШИМ-сигналом, то при частоте следования импульсов ниже 500 Гц, диапазон изменения яркости составляет 1-100%. Если же частота выше 10 кГц, то от 25% до 100%;

Максимальное напряжение, которое можно подавать на вход регулировки яркости (ADJ) составляет 6В. При этом в диапазоне от 2.5 до 6В драйвер выдает максимальный ток, который задан токоограничительным резистором. Сопротивление резистора рассчитывается точно так же, как во всех вышеперечисленных микросхемах:

R = 0.1 / I LED

Минимальное сопротивление резистора - 0.27 Ом.

Типовая схема включения ничем не отличается от своих собратьев:

Без конденсатора С1 подавать питание не схему НЕЛЬЗЯ!!! В лучшем случае микросхема будет перегреваться и выдавать нестабильные характеристики. В худшем случае - мгновенно выйдет из строя.

Более подробные характеристики ZXLD1350 можно найти в даташите на эту микросхему .

Стоимость микросхемы неоправданно высокая (), при том, что выходной ток довольно небольшой. В общем, сильно на любителя. Я б не связывался.

QX5241

QX5241 - это китайский аналог MAX16819 (MAX16820), но в более удобном корпусе. Также выпускается под наименованиями KF5241, 5241B. Имеет маркировку "5241a" (см. фото).

В одном известном магазине их продают чуть ли не на вес (10 штук за 90 руб).

Драйвер работает по точно такому же принципу, как и все вышеописанные (понижающий преобразователь непрерывного действия), однако не содержит в своем составе выходной ключ, поэтому для работы требуется подключение внешнего полевого транзистора.

Можно взять любой N-канальный MOSFET с подходящим током стока и напряжением сток-исток. Подойдут, например, такие: SQ2310ES (до 20V!!!), 40N06 , IRF7413 , IPD090N03L , IRF7201 . Вообще, чем ниже будет напряжение открытия, тем лучше.

Вот некоторые ключевые характеристики LED-драйвера на QX5241:

  • максимальный выходной ток - 2.5 А;
  • КПД до 96%;
  • максимальная частота диммирования - 5 кГц;
  • максимальная рабочая частота преобразователя - 1 МГц;
  • точность стабилизации тока через светодиоды - 1%;
  • напряжение питания - 5.5 - 36 Вольт (нормально работает и при 38!);
  • выходной ток рассчитывается по формуле: R = 0.2 / I LED

Более подробно читайте в спецификации (на инглише).

Светодиодный драйвер на QX5241 содержит мало деталей и собирается всегда по такой схеме:

Микросхема 5241 бывает только в корпусе SOT23-6, так что со паяльником для пайки кастрюль к ней лучше не подходить. После монтажа плату следует хорошенько промывать от флюса, любые непонятные загрязнения могут негативно сказываться на режиме работы микросхемы.

Разница между питающим напряжением и суммарным падением напряжения на диодах должно быть вольта 4 (или больше). Если меньше - то наблюдаются какие-то глюки в работе (нестабильность тока и свист дросселя). Так что берите с запасом. Причем, чем больше выходной ток, тем больше запас по напряжению. Хотя, возможно, мне просто попался неудачный экземпляр микросхемы.

Если входное напряжение меньше, чем общее падение на светодиодах, то генерация срывается. При этом выходной полевик полностью открывается и светодиоды светятся (естественно, не на полную мощность, так как напряжения маловато).

AL9910

Diodes Incorporated создала одну весьма интересную микросхему драйвера светодиодов: AL9910. Любопытна она тем, что ее рабочий диапазон напряжений позволяет подключать ее прямо к сети 220В (через простой диодный выпрямитель).

Вот ее основные характеристики:

  • входное напряжение - до 500В (до 277В для переменки);
  • встроенный стабилизатор напряжения для питания микросхемы, не требующий гасящего резистора;
  • возможность регулировки яркости путем изменения потенциала на управляющей ноге от 0.045 до 0.25В;
  • встроенная защита от перегрева (срабатывает при 150°С);
  • рабочая частота (25-300 кГц) задается внешним резистором;
  • для работы необходим внешний полевой транзистор;
  • выпускается в восьминогих корпусах SO-8 и SO-8EP.

Драйвер, собранный на микросхеме AL9910 не имеет гальванической развязки с сетью, поэтому должен использоваться только там, где невозможно прямое прикосновение к элементам схемы.

У каждого диода, в свою очередь, в описании указано падение напряжения при разных токах. Например, для красного диода 660 нм при токе 600 мА оно составит 2,5 В:

Количество диодов, которое можно подключить на драйвер, суммарным падением напряжения должно укладываться в пределы выходного напряжения драйвера. То есть на драйвер 50Вт 600 мА с выходным напряжением 60-83 В можно подключить от 24 до 33 красных диодов 660 нм. (То есть 2,5*24 = 60, 2,5*33 = 82,5).

Другой пример:
Хотим собрать биколорную лампу красный + синий. Выбрали соотношение красного к синему 3:1 и хотим рассчитать, какой драйвер нужно взять для 42 красных и 14 синих диодов. Считаем: 42*2,5 + 14*3,5 = 154 В. Значит, нам потребуется два драйвера 50 Вт 600 мА, на каждый будет приходиться 21 красных и 7 синих диодов, суммарное падение напряжения на каждом получится по 77 В, что попадает в его выходное напряжение.

Теперь несколько важных пояснений:

1) Не стоит искать драйвер мощностью более 50 Вт: они есть, но они менее эффективны, чем аналогичный набор драйверов меньшей мощности. Более того, они будут сильно греться, что потребует от Вас дополнительных расходов на более мощное охлаждение. Кроме тго, драйвера мощностью более 50Вт как правило сильно дороже, например драйвер на 100Вт может быть дороже чем 2 драйвера по 50Вт. Поэтому гнаться за ними не стоит. Да и надежнее когда цепи светодиодов разделены на секции, если вдруг что-то перегорит - то сгорит не все а только чать. Поэтому выгодно разделять на несколько драйверов, а не стремиться все повесить на один. Вывод: 50Вт - оптимальный вариант, не больше.

2) Ток у драйверов бывает разный: 300 мА, 600 мА, 750 мА - это ходовые. Других вариантов довольно много.
По большому счету, более эффективным с точки зрения КПД на 1 Вт будет использование драйвера на 300 мА, также он не будет сильно нагружать светодиоды, и они будут меньше греться и дольше прослужат. Но главный минус таких драйверов, что диоды будут работать "вполсилы", и поэтому их потребуется примерно в два раза больше, чем для аналога с 600 мА.
Драйвер с током 750 мА будет питать диоды на пределе возможностей, поэтому диоды будут очень сильно греться, и им потребуется очень мощное, хорошо продуманное охлаждение. Но даже несмотря на это, они в любом случае деградируют от перегрева раньше среднего срока "жизни" светодиодных ламп работающих например на 500-600 мА токе.
Поэтому мы рекомендуем использовать драйверы с током 600 мА. Они получаются самым оптимальным решением с точки зрения соотношения цена-эффективность-срок службы.

3) Мощность диодов указывается номинальная, то есть максимально возможная. Но на максимум они никогда не запитываются (почему - см. п.2). Реальную мощность диода рассчитать очень просто: необходимо ток используемого драйвера умножить на падение напряжения диода. Например, при подключении драйвера на 600 mA к красному диоду 660 нм мы получим реальное напряжение на диоде: 0,6(А) * 2,5(В) = 1,5 Вт.

Рассмотрим способы включения лед диодов средней мощности к наиболее популярным номиналам 5В, 12 вольт, 220В. Затем их можно использовать при изготовлении цветомузыкальных устройств, индикаторов уровня сигнала, плавное включение и выключение. Давно собираюсь сделать плавный искусственный рассвет, чтобы соблюдать распорядок дня. К тому же эмуляция рассвета позволяет просыпаться гораздо лучше и легче.

Драйвера с питанием от 5В до 30В

Если у вас есть подходящий источник питания от какой либо бытовой техники, то для включения лучше использовать низковольтный драйвер. Они бывают повышающие и понижающие. Повышающий даже из 1,5В сделает 5В, чтобы светодиодная цепь работала. Понижающий из 10В-30В сделает более низкое, например 15В.

В большом ассортименте они продаются у китайцев, низковольтный драйвер отличается двумя регуляторами от простого стабилизатора Вольт.

Реальная мощность такого стабилизатора будет ниже, чем указал китаец. У параметрах модуля пишут характеристику микросхемы и не всей конструкции. Если стоит большой радиатор, то такой модуль потянет 70% — 80% от обещанного. Если радиатора нет, то 25% — 35%.

Особенно популярны модели на LM2596, которые уже прилично устарели из-за низкого КПД. Еще они сильно греются, поэтому без системы охлаждения не держат более 1 Ампера.

Более эффективны XL4015, XL4005, КПД гораздо выше. Без радиатора охлаждения выдерживают до 2,5А. Есть совсем миниатюрные модели на MP1584 размером 22мм на 17мм.

Включение 1 диода

Чаще всего используются 12 вольт, 220 вольт и 5В. Таким образом делается маломощная светодиодная подсветка настенных выключателей на 220В. В заводских стандартных выключателях чаще всего ставится неоновая лампа.

Параллельное подключение

При параллельном соединении желательно на каждую последовательную цепь диодов использовать отдельный резистор, чтобы получить максимальную надежность. Другой вариант, это ставить одно мощное сопротивление на несколько LED. Но при выходе одного LED из строя увеличится ток на других оставшихся. На целых будет выше номинального или заданного, что значительно сократит ресурс и увеличит нагрев.

Рациональность применений каждого способа рассчитывают исходя из требований к изделию.

Последовательное подключение

Последовательное подключение при питании от 220в используют в филаментных диодах и светодиодных лентах на 220 вольт. В длинной цепочке из 60-70 LED на каждом падает 3В, что и позволяет подсоединять напрямую к высокому напряжению. Дополнительно используется только выпрямитель тока, для получения плюса и минуса.

Такое соединение применяют в любой светотехнике:

  1. светодиодные лампах для дома;
  2. led светильники;
  3. новогодние гирлянды на 220В;
  4. светодиодные ленты на 220.

В лампах для дома обычно используется до 20 LED включенных последовательно, напряжение на них получается около 60В. Максимальное количество используется в китайских лампочках кукурузах, от 30 до 120 штук LED. Кукурузы не имеют защитной колбы, поэтому электрические контакты на которых до 180В полностью открыты.

Соблюдайте осторожность, если видите длинную последовательную цепочку, к тому же на них не всегда есть заземление. Мой сосед схватил кукурузу голыми руками и потом рассказывал увлекательные стихи из нехороших слов.

Подключение RGB LED

Маломощные трёхцветные RGB светодиоды состоят из трёх независимых кристаллов, находящихся в одном корпусе. Если 3 кристалла (красный, зеленый, синий) включить одновременно, то получим белый свет.

Управление каждым цветом происходит независимо от других при помощи RGB контроллера. В блоке управления есть готовые программы и ручные режимы.

Включение COB диодов

Схемы подключения такие же, как у однокристальных и трехцветных светодиодов SMD5050, SMD 5630, SMD 5730. Единственное отличие, вместо 1 диода включена последовательная цепь из нескольких кристаллов.

Мощные светодиодные матрицы имеют в своём составе множество кристаллов включенных последовательно и параллельно. Поэтому питание требуется от 9 до 40 вольт, зависит от мощности.

Подключение SMD5050 на 3 кристалла

От обычных диодов SMD5050 отличается тем, что состоит из 3 кристаллов белого света, поэтому имеет 6 ножек. То есть он равен трём SMD2835, сделанным на этих же кристаллах.

При параллельном включении с использованием одного резистора надежность будет ниже. Если один их кристаллов выходит из строя, то увеличивается сила тока через оставшиеся 2. Это приводит к ускоренному выгоранию оставшихся.

При использовании отдельного сопротивления для каждого кристалла, выше указанный недостаток устраняется. Но при этом в 3 раза возрастает количество используемых резисторов и схема подключения светодиода становится сложней. Поэтому оно не используется в светодиодных лентах и лампах.

Светодиодная лента 12В SMD5630

Наглядным примером подключения светодиода к 12 вольтам является светодиодная лента. Она состоит из секций по 3 диода и 1 резистора, включенных последовательно. Поэтому разрезать её можно только в указанных местах между этими секциями.

Светодиодная лента RGB 12В SMD5050

В RGB ленте используется три цвета, каждый управляется отдельно, для каждого цвета ставится резистор. Разрезать можно только по указанному месту, чтобы в каждой секции было по 3 SMD5050 и она могла подключатся к 12 вольт.