Схема стабилизатора напряжения на стабилитроне. Схема простого стабилизатора постоянного напряжения на опорном стабилитроне и транзисторе. Типичные схемы параллельных параметрических стабилизаторов

Параметрические стабилизаторы напряжения до сих пор используются для питания маломощных устройств электронных изделий, поэтому необходимо уметь их рассчитывать.

Зачастую при повторении готовых конструкций, условия функционирования которых отличаются от рекомендованных разработчиком, требуется провести анализ работы параметрического стабилизатора напряжения для уточнения значения сопротивления балластного резистора.

Указанные задачи решены с помощью разработанного автором файла в Microsoft Excel. Приведено два варианта расчета параметрического стабилизатора напряжения и расчет для анализа условий работы стабилитрона в готовой схеме.

Объектами расчета и анализа в примерах выступают параметрические стабилизаторы двух известных конструкций усилителей мощности звуковой частоты. Это c Интерлавки и от Андрея Зеленин а.

Основные соотношения для расчета параметрического стабилизатора на стабилитроне

На рис. 1 показана принципиальная схема параметрического стабилизатора: Uвх – входное нестабилизированное напряжение, Uвых=Uст – выходное стабилизированное напряжение, Iст – ток через стабилитрон, Iн – ток нагрузки, R 0 – балластный (ограничительный, гасящий) резистор.

Uвх=Uст+(Iн+Iст)R 0 =Uст+IR 0 , (1)
I= Iн+Iст – ток, протекающий через балластный резистор R 0 .


Рис. 1. Схема параметрического стабилизатора напряжения на стабилитроне


Как видно из рис. 1, параметрический стабилизатор на кремниевом стабилитроне представляет собой делитель напряжения, состоящий из балластного резистора R 0 с линейной Вольт - амперной характеристикой (ВАХ) и стабилитрона VD1, который можно рассматривать как резистор с резко нелинейной ВАХ.

При изменении напряжения Uвх изменяется ток через делитель, приводящий к изменению падения напряжения на резисторе R 0 , а напряжение на стабилитроне, следовательно, на нагрузке Rн практически не изменяется.

Малое изменение напряжения на нагрузке в диапазоне от Uст min до Uст max соответствует изменению тока через стабилитрон от Iст min до Iст max. Причем, минимальный ток через стабилитрон соответствует минимальному входному напряжению и максимальному току нагрузки, что достигается при сопротивлении балластного резистора

R 0 =(Uвх min-Uст min)/(Iн max+Iст min). (2)

В свою очередь, максимальный ток через стабилитрон будет протекать при минимальном токе нагрузки и максимальном входном напряжении.

Несложно найти условия работы стабилизатора:

ΔUвх=ΔUст+R 0 (ΔIст-ΔIн), (3)
где ΔUвх=Uвх max-Uвх min, ΔUст= Uст max-Uст min, ΔIст=Iст max- Iст min, ΔIн= Iн max-Iн min.

Положим для упрощения ΔUст=0 и проанализируем выражение (3).

Диапазон изменения тока нагрузки не может быть больше, чем диапазон изменения тока стабилитрона, поскольку в этом случае правая часть выражения становится отрицательной, и схема не будет работать как стабилизатор напряжения.


Если изменение тока нагрузки незначительно, выражение для условия работы стабилизатора упрощается:

ΔUвх= ΔIстR 0 . (4)

КПД параметрического стабилизатора определяется из выражения:

КПД=Uст Iн /(Uвх (Iн + Iст)=1/(Nст(1+ Iст/Iн)), (5)
где Nст=Uвх/Uст – коэффициент передачи стабилизатора; обычно Nст=1,4…2.

Из выражения (5) следует, что чем ниже коэффициент передачи стабилизатора и чем меньше отношение тока через стабилитрон к току нагрузки, тем выше КПД.

Основным параметром стабилизатора напряжения, по которому оценивают его качество работы, является коэффициент стабилизации:

Kст=(ΔUвх/Uвх)/(ΔUвых/Uвых)= R 0 Uст/rдUвх=R 0 /Nстrд=KфКПД, (6)
где rд - динамическое сопротивление стабилитрона; Kф – коэффициент фильтрации.

Первый вариант расчета параметрического стабилизатора

проведем для случая, когда напряжение питания нестабильно, а сопротивление нагрузки относительно постоянно.


Исходными данными для расчета служат: Uвых, Iн, ΔIн, Uвх, ΔUвх.

Для получения требуемого выходного напряжения по справочнику выбираем стабилитрон с параметрами: Uст= Uвых, Iст max, Iст min, rд.

Требуемоемое входное напряжение рассчитываем исходя из крайних оптимальных коэффициентов передачи стабилизатора Nст=1,4…2, который также может быть выбран пользователем в любом необходимом диапазоне Nст:

Iст р=0,5(Iст min+Iст max)> Iн.

Вычислим сопротивление балластного резистора:

R 0 =(Uвх- Uст)/(Iст р+ Iн).

Рассчитаем с двукратным запасом мощность балластного резистора:

Po=2(Iст р+ Iн) 2 R 0 .

Проверим выбранный режим работы стабилизатора.
Расчет произведен верно, если при одновременном изменении Uвх на величину ΔUвх и Iн на величину ΔIн ток стабилитрона не выходит за пределы Iст max и Iст min:
Iст р max=(Uвх+ ΔUвх- Uст)/(R 0 -(Iн- ΔIн))<0,8 Iст max;
Iст р min=(Uвх- Uст)/(R0-(Iн+ ΔIн))>1,2 Iст min.


Здесь учтен запас в 20%, необходимый для надежной работы стабилитрона. Принятое при расчете наибольшее рабочее значение тока через стабилитрон не более 0,8 от справочного Iст max вызвано соображениями эксплуатационной надежности устройства, чтобы мощность, рассеиваемая на стабилитроне была ниже предельной. Для гарантированного обеспечения требуемого коэффициента стабилизации минимальное рабочее значение тока через стабилитрон Iст р min принято в расчете в 1,2 раза большим, чем Iст min.

Если полученные значения токов Iст р max и Iст р min выходят за пределы допустимых значений, то необходимо выбрать другое значение Iст р, изменить сопротивление R 0 или заменить стабилитрон.


Также вычислим параметры стабилизатора, определяющие его качество и эффективность – коэффициент стабилизации Kст=(ΔUвх/Uвх)/(ΔUвых/Uвых)= R 0 /(rдNст),
коэффициент полезного действия КПД=Uст Iн /(Uвх (Iн + Iст))=1/(Nст(1+ Iст/Iн)),
и коэффициент фильтрации Kф=Kст/КПД.

Пример расчета №1

Рассчитаем параметрический стабилизатор напряжения со следующими характеристиками: стабилизированное напряжение на нагрузке Uн=9 В; ток в нагрузке Iн=10 мА; изменение тока в нагрузке ΔIн=2 мА; изменение входного напряжения ΔUвх=10%.

Выберем стабилитрон типа Д814Б, для которого Uст= Uн=9 В; rд=10 Ом; Iст max=36 мА; Iст min=3 мА.

Заносим приведенную выше информацию в соответствующие ячейки исходных данных (выделены светло-голубой заливкой) листа «Первый вариант расчета» таблицы Microsoft Excel «Расчет и анализ работы параметрического стабилизатора напряжения.xlsx» и тут же получаем результаты вычислений в расчетных ячейках, выделенных светло-коричневой заливкой:

входное напряжение Uвх=15,0 В; сопротивление балластного резистора R 0 =240 Ом, мощность балластного резистора с двукратным запасом Po=0,3 Вт; Kст=15,0, КПД=24%, Kф=62,5 (см. рис. 2).


Рис. 2. Печать с экрана примера расчета №1

Выбираем резистор сопротивлением 240 Ом мощностью 0,5 Вт.

Предположим, что на входе стабилизатора имеются пульсации переменного напряжения амплитудой Uп вх=0,1 В=100 мВ. Амплитуда пульсаций на выходе стабилизатора составит Uп ст= Uп вх/Kф=100/62,5=1,6 мВ.

Пример расчета №2

Произведем расчет параметрического стабилизатора для для питающих напряжений Uп=Uвх=±25 В; ±35 В и ±45 В.

Расчет выполним для параметрического стабилизатора положительной полярности (R5, VD1, C2), поскольку другой стабилизатор, отрицательной полярности (R6, VD2, C4) отличается только направлением включения стабилитрона.

Подготовим исходные данные: стабилизированное напряжение на нагрузке Uн=12 В, ток в нагрузке Iн=(12-0,5)/R2=11,5/10=1,15 мА, ΔIн=0,115 мА, изменение входного напряжения ΔUвх=10%.

Выберем стабилитрон BZX55C12, имеющий следующие параметры: Uст= Uн=12 В; rд=20 Ом; Iст max=32 мА; Iст min=5 мА.

Результаты вычислений показаны на рис. 3; для Uп=±25 В R5=R6=1,3 кОм (0,25 Вт); для Uп=±35 В R5=R6=2,4 кОм (0,5 Вт); для Uп=±45 В R5=R6=3,6 кОм (1 Вт).


Рис. 3. Расчет параметрических стабилизаторов для усилителя «Green Lanzar»

Второй вариант расчета параметрического стабилизатора

в качестве исходных данных использует предельные значения тока в нагрузке Iн min и Iн max, что при Iн min=0 позволяет предусмотреть режим холостого хода стабилизатора. Для постоянной нагрузки выбирают Iн max= Iн min.


Итак, исходными данными являются: стабилизированное напряжение на нагрузке Uвых, токи нагрузки Iн min, Iн max, номинальное входное напряжение Uвх и его отклонения ΔUвх н и ΔUвх в.

Параметры стабилитрона те же, что и в предыдущем расчете: Uст= Uвых, Iст max, Iст min, rд.

Вычисляем максимальное и минимальное значения рабочего тока стабилитрона:

Iст р max=0,8 Iст max,
Iст р min=1,2 Iст min.

Если стабилизатор должен работать режиме холостого хода (Iн min=0), выбираем Iст р min=Iст min.

Проверяем пригодность выбранного по напряжению стабилизации стабилитрона заданных пределах тока нагрузки и питающего напряжения:

(Iст р max+ Iн min)(1- ΔUвх н)-(Iст min+ Iн max)(1+ ΔUвх в)>0,
где ΔUвх н=(Uвх- Uвх min)/ Uвх, ΔUвх в=(Uвх max-Uвх)/ Uвх.

Если неравенство не выполняется, нужно:
применить более мощный стабилитрон;
задаться меньшими значениями ΔUвх н и ΔUвх в;
уменьшить Iн max или увеличить Iн min.


Номинальное напряжение Uвх, которое должен обеспечить выпрямитель, вычисляем по формуле:

Uвх= Uст[(Iст р max+I н min)- (Iст р min+ I н max)]/[(Iст р max+I н min)(1- ΔUвх н)- (Iст р min+I н max)(1+ΔUвх в)].

Сопротивление балластного резистора:

R 0 = Uвх(ΔUвх в+ΔUвх н)/[(Iст р max+ Iн min)- (Iст р min+ Iн max)].

Также вычисляем мощность резистора с двукратным запасом:

Po=2(Uвх(1+ ΔUвх н)- Uст) 2 /R 0 .

По приведенным в первом варианте расчета формулам находим Kст, КПД и Kф.

Пример расчета №3

Рассчитаем параметрический стабилизатор напряжения со следующими характеристиками: стабилизированное напряжение на нагрузке Uн=9 В; ток Iн min =0, Iн max =10 мА; изменение входного ΔUвх н=10%, ΔUвх в=15%.

Выберем стабилитрон типа Д814Б, для которого Uст= Uн; rд=10 Ом; Iст max=36 мА, Iст min=3 мА.

После занесения исходных данных листе таблицы «Второй вариант расчета» получаем следующие результаты (рис. 4):

Uвх=14 В, R 0 =221 Ом, Po=0,45 Вт, Kст=14,2.


Рис. 4. Скриншот параметрического стабилизатора режимом холостого хода

Выбираем резистор сопротивлением 220 Ом мощностью 0,5 Вт.

Анализ работы параметрического стабилизатора

Исходные данные анализа следующие: Uн, Iн, ΔIн, ΔUвх, R 0 .

Также для анализа необходимы параметры стабилитрона: Uст= Uн, rд, Iст max и Iст min.

Анализ сводится к вычислению рабочего тока стабилитрона Iст р=(Uвх-Uст)/R 0 -Iн; коэффициента передачи Nст= Uвх/Uст; мощности Po балластного резистора, коэффициента стабилизации Kст, КПД и коэффициента фильтрации Kф.

Важной является проверка режима работы стабилитрона в схеме стабилизатора, которая выполняется по формулам, аналогичным приведенным в первом варианте расчета.

Пример анализа №1

Проанализируем номиналы балластных резисторов R3 и R4 компенсационных стабилизаторов напряжения усилителя «Ланзар» в зависимости от используемого напряжения питания.

Заявлен диапазон питающих напряжений усилителя от Uп=±30 В до ±65 В, в то время как на принципиальной схеме указаны сопротивления балластных резисторов R 0 =R3=R4=2,2 кОм (1 Вт) .

В другой публикации рекомендуется выбирать величину сопротивления балластных резисторов в зависимости от напряжения питания усилителя по формуле R 0 =(Uп-15)/I, где I=8…10 мА. В таблице 1 выполнен расчет по указанной формуле для диапазона питающих напряжений усилителя с шагом в 5 В.

Исходные данные для анализа: стабилизированное напряжение на нагрузке Uн=15 В, ток в нагрузке Iн=(15-0,5)/R5=14,5/6,8=2,13 мА, ΔIн=0,213 мА, изменение входного напряжения ΔUвх=10%.

Выберем стабилитрон 1N4744A, имеющий следующие параметры: Uст= Uн=15 В; rд=14 Ом; Iст max=61 мА; Iст min=5 мА.

Анализ работы параметрических стабилизаторов в усилителе «Ланзар» показал, что минимальный ток стабилизатора Iст р min выбран на пределе с запасом всего 3…14% вместо требуемых 20% (рис. 5).


Рис. 5. Режимы работы стабилизаторов в усилителе «Ланзар» в зависимости от выбранного напряжения питания

Используя средство анализа данных электронной таблицы Microsoft Excel «Подбор параметра», уточним сопротивления балластных резисторов. Для этого перейдем в ячейку с формулой для Iст р min (ячейка C26 ) и в меню выберем Данные -> «Анализ «что-если »->Подбор параметра .

Установим в ячейке C26 значение 6,0 (запас 20% от Iст min), изменяя значение ячейки, в которой занесено сопротивление балластного резистора ($C$15 ).

Получим R 0 =1,438 кОм. Занесем в эту ячейку ближайшее значение сопротивления из стандартного ряда R 0 =1,3 кОм.

Проведя в таблице указанную операцию для всех значений питающих напряжений, получим следующий результат (рис. 6).


Рис. 6. Уточнение режимов работы параметрических стабилизаторов усилителя «Ланзар»

Итоги анализа сведены также в таблицу 2.

Мощность резисторов для напряжений питания усилителя от ±30 В до ±40 В – 0,5 Вт, для остальных напряжений – 1 Вт.

Итог

Необходим расчет даже такого простого устройства как параметрический стабилизатор напряжения. Выбор значения сопротивления балластного резистора «на глазок» может вызвать ошибки проектирования, которые не сразу будут замечены.

Перед сборкой понравившейся конструкции целесообразно проанализировать и при необходимости уточнить режим работы стабилитрона параметрического стабилизатора с помощью предлагаемых электронных таблиц в Microsoft Excel.

В маломощных схемах на нагрузку до 20 миллиампер применяется устройство с малым коэффициентом действия, и называется параметрическим стабилизатором. В устройстве таких приборов имеются транзисторы, стабилитроны и стабисторы. Они применяются в основном в компенсационных устройствах стабилизации в качестве опорных источников питания. Параметрические стабилизаторы в зависимости от технических данных могут быть 1-каскадными, мостовыми и многокаскадными.

Стабилитрон в устройстве прибора подобен подключенному диоду. Но обратный пробой напряжения больше подходит для стабилитрона и является базой его нормальной работы. Эта характеристика нашла популярность для разных схем, где необходимо создавать ограничение сигнала входа по напряжению.

Такие стабилизаторы являются быстродействующими приборами, и защищают участки с повышенной чувствительностью от импульсных помех. Применение таких элементов в новых схемах является показателем их повышенного качества, которое обеспечивает постоянное функционирование в разных режимах.

Схема стабилизатора

Базой этого прибора является схема подключения стабилитрона, применяющаяся и в других видах приборов вместо источника питания.

Схема включает в себя делитель напряжения из балластного сопротивления и стабилитрона, к которому параллельно подключена нагрузка. Устройство выравнивает напряжение на выходе при переменном питании и нагрузочном токе.

Действие схемы происходит следующим образом. Напряжение, повышающееся на входе прибора, вызывает повышение тока, который проходит через сопротивление R1 и стабилитрон VD. На стабилитроне напряжение остается постоянным из-за его вольтамперной характеристики. Поэтому не меняется и напряжение на нагрузке. В итоге все преобразованное напряжение будет приходить на сопротивление R1. Такой принцип действия схемы позволяет сделать расчет всех параметров.

Принцип действия стабилитрона

Если стабилитрон сравнивать с диодом, то при подключении диода в прямом направлении по нему может проходить обратный ток, который имеет незначительную величину в несколько микроампер. При повышении обратного напряжения до некоторой величины возникнет пробой электрический, а если ток очень велик, то произойдет и тепловой пробой, поэтому диод выйдет из строя. Конечно, диод может работать при электрическом пробое при снижении тока, проходящего через диод.

Стабилитрон спроектирован так, что его характеристика на участке пробоя имеет повышенную линейность, а разность потенциалов пробоя достаточно стабильна. Стабилизация напряжения с помощью стабилитрона выполняется при его функционировании на обратной ветви свойства тока и напряжения, а на прямой ветке графика стабилитрон работает как обычный диод. На схеме стабилитрон обозначается:

Параметры стабилитрона

Его главные параметры можно увидеть по характеристике напряжения и тока.

  • Напряжение стабилизации является напряжением на стабилитроне при прохождении тока стабилизации. Сегодня производятся стабилитроны с таким параметром, равным 0,7-200 вольт.
  • Наибольший допустимый ток стабилизации . Он ограничен величиной наибольшей допустимой мощности рассеивания, которая зависит от температуры внешней среды.
  • Наименьший ток стабилизации , рассчитывается наименьшей величиной тока, протекающего через стабилитрон, при этом сохраняется действие стабилизатора.
  • Дифференциальное сопротивление – это величина, равная отношению приращения напряжения к малому приращению тока.

Стабилитрон, подключенный в схеме как простой диод в прямом направлении, характеризуется величинами постоянного напряжения и наибольшим допустимым прямым током.

Расчет параметрического стабилизатора

Добротность функционирования прибора вычисляется по коэффициенту стабилизации, который вычисляется по формуле: Кст U = (ΔUвх / Uвх) / (ΔU вых / Uвых).

Далее расчет стабилизатора с применением стабилитрона производится в сочетании с балластным резистором в соответствии с типом применяемого стабилитрона. Для расчета используются рассмотренные ранее параметры стабилитрона.

Определим порядок расчета на примере. Возьмем исходные данные:

  • U вых=9 В;
  • I н =10мА;
  • ΔI н = ±2мА;
  • ΔU вх = ± 10% Uвх

По справочнику подбираем стабилитрон Д 814Б, свойства которого:

  • U ст = 9 В;
  • I ст. макс = 36 мА;
  • I ст. мин = 3 мА;
  • R д = 10 Ом.

Далее вычисляется входное напряжение: Uвх = nст *Uвых, где nст – коэффициент передачи. Функционирование стабилизатора станет эффективнее, если этот коэффициент будет в пределах 1,4-2. Если nст =1,6, то U вх= 1,6 * 9 = 14,4 В.

На следующем шаге производится расчет балластного резистора. Используется формула: R о = (U вх – U вых) / (I ст + I н). Величина тока I ст выбирается: I ст ≥ I н. При изменении U вх на величину Δ Uвх и Iн на ΔIн, не может быть больше тока стабилитрона величин I ст. макс и I ст. мин. Поэтому, I ст берется в качестве среднего допустимой величины в этом интервале и равно 0,015 ампер.

Значит, балластный резистор равен: R о = (14,4 – 9)/(0,015+0,01)= 16 Ом. Ближнее стандартное значение составляет 220 Ом. Для выбора типа сопротивления, выполняется расчет рассеиваемой мощности на корпусе. Применяя формулу Р = I*2 R о, определяем величину Р = (25*10-3) * 2 * 220 = 0,138 ватт. Другими словами, стандартная мощность сопротивления равна 0,25 ватт.

Поэтому лучше подойдет сопротивление МЛТ — 0,25 — 220 Ом. После осуществления расчетов необходимо проверить правильность выбора режима действия стабилитрона в схеме параметрического прибора. В первую очередь определяется его наименьший ток: Iст. Мин = (U вх – ΔU вх – U вых) / Rо – (I н + ΔI н), с практическими параметрами определяется величина I ст.мин = (14,4–1,44–9) * 103 / 220–(10+2) = 6 миллиампер.

Такая же процедура производится для вычисления наибольшего тока: I ст. макс=(Uвх+ΔUвх–Uвых)/Rо–(Iн–ΔIн). По исходным параметрам, наибольший ток составит: Iст.макс=(14,4 + 1,44 – 9) * 103 / 220–(10 – 2)=23 миллиампер. Если в результате вычисленные значения наименьшего и наибольшего тока превосходят допустимые границы, то необходимо заменить I ст или резистор R о. Иногда требуется замена стабилитрона.



Чтобы подобрать стабилитрон для схемы, показанной на рис. 3, нужно знать диапазон входных напряжений U1 и диапазон изменения нагрузки R Н.

Рис. 3. Схема включения стабилитрона.

Для примера рассчитаем сопротивление R и подберём стабилитрон для схемы на рис. 3 со следующими требованиями:

Итак, для начала рассчитаем значение сопротивления R. Минимальное напряжение на входе равно 11 В. При таком напряжении мы должны обеспечить ток на нагрузке не менее 100 мА (или 0,1 А). Закон Ома позволяет определить сопротивление резистора:

R Ц = U1 МИН / I Н.МАКС = 11 / 0,1 = 110 Ом То есть цепь для обеспечения заданного тока на нагрузке должна иметь сопротивление не более 110 Ом.

На стабилитроне падает напряжение 9 В (в нашем случае). Тогда при токе 0,1 А эквивалент нагрузки: R Э = U2 / I Н.МАКС = 9 / 0,1 = 90 Ом Тогда, для того чтобы обеспечить на нагрузке ток 0,1 А, гасящий резистор должен иметь сопротивление: R = R Ц – R Э = 110 – 90 = 20 Ом С учётом того, что сам стабилитрон тоже потребляет ток, можно выбрать несколько меньшее сопротивление из стандартного ряда Е24 ). Но, так как стабилитрон потребляет небольшой ток, этим значением в большинстве случаев можно пренебречь.

Теперь определим максимальный ток через стабилитрон при максимальном входном напряжении и отключенной нагрузке. Расчёт нужно выполнять именно при отключенной нагрузке, так как даже если у вас нагрузка будет всегда подключена, нельзя исключить вероятность того, что какой-нибудь проводок отпаяется и нагрузка отключится.

Итак, вычислим падение напряжения на резисторе R при максимальном входном напряжении:

U R.МАКС = U1 МАКС – U2 = 15 – 9 = 6 В А теперь определим ток через резистор R из того же закона Ома: I R.МАКС = U R.МАКС / R = 6 / 20 = 0,3 А = 300 мА Так как резистор R и стабилитрон VD включены последовательно, то максимальный ток через резистор будет равен максимальному току через стабилитрон (при отключенной нагрузке), то есть I R.МАКС = I VD.МАКС = 0,3 А = 300 мА Нужно ещё рассчитать мощность рассеивания резистора R. Но здесь это мы делать не будем, поскольку данная тема подробно описана в статье Резисторы .

А вот мощность рассеяния стабилитрона рассчитаем:

P МАКС = I VD.МАКС * U СТ = 0,3 * 9 = 2,7 Вт = 2700 мВт Мощность рассеяния – очень важный параметр, который часто забывают учесть. Если окажется, что мощность рассеяния на стабилитроне превысит максимально допустимую, то это приведёт к перегреву стабилитрона и выходу его из строя. Хотя при этом ток может быть в пределах нормы. Поэтому мощность рассеяния как для гасящего резистора R, так и для стабилитрона VD нужно всегда рассчитывать.

Осталось подобрать стабилитрон по полученным параметрам:

U СТ = 9 В – номинальное напряжение стабилизации
I СТ.МАКС = 300 мА – максимально допустимый ток через стабилитрон
Р МАКС = 2700 мВт – мощность рассеяния стабилитрона при I СТ.МАКС

По этим параметрам в справочнике находим подходящий стабилитрон. Для наших целей подойдёт, например, стабилитрон Д815В.

Надо сказать, что этот расчет довольно грубый, так как он не учитывает некоторые параметры, такие, например, как температурные погрешности. Однако в большинстве практических случаев описанный здесь способ подбора стабилитрона вполне подходит.

Стабилитроны серии Д815 имеют разброс напряжений стабилизации. Например, диапазон напряжений Д815В – 7,4…9,1 В. Поэтому, если нужно получить точное напряжение на нагрузке (например, ровно 9 В), то придётся опытным путём подобрать стабилитрон из партии нескольких однотипных. Если нет желания возиться с подбором «методом тыка», то можно выбрать стабилитроны другой серии, например серии КС190. Правда, для нашего случая они не подойдут, поскольку имеют мощность рассеивания не более 150 мВт. Для повышения выходной мощности стабилизатора напряжения можно использовать транзистор. Но об этом как-нибудь в другой раз…

И ещё. В нашем случае получилась довольная большая мощность рассеивания стабилитрона. И хотя по характеристикам для Д815В максимальная мощность 8000 мВт, рекомендуется устанавливать стабилитрон на радиатор, особенно если он работает в сложных условиях (высокая температура окружающей среды, плохая вентиляция и т.п.).

Если необходимо, то ниже вы можете выполнить описанные выше рассчёты для вашего случая

Для сглаживания пульсаций напряжения и постоянства тока на выходе блока питания применяют стабилизаторы. Как правило в основе стабилизатора лежит стабилитрон. Стабилитрон – полупроводниковый прибор обладающий свойством стабилизации напряжения. В отличии от обычного диода работает в обратной полярности (на катод подается плюс), в режиме лавинного пробоя. Благодаря этому свойству стабилитрона напряжение на нем, а следовательно, и на нагрузке практический не меняется. На рисунке ниже представлена схема простейшего стабилизатора.

Такой стабилизатор подойдет для питания маломощных устройств.

Принцип работы стабилизатора на стабилитроне

Конденсатор нужен для сглаживания пульсаций по напряжению, называется он фильтрующим. Резистор нужен для сглаживания пульсаций по току и называется он гасящим. Стабилитрон стабилизирует напряжение на нагрузке. Для нормальной работы данной схемы напряжение питания должно быть больше 40…50 %. Стабилитрон следует подобрать под нужное нам напряжение и ток.

Стабилизатор на одном транзисторе

Для питания нагрузки большей мощности в схему добавляют транзистор. Пример схемы показан ниже.

Принцип работы стабилизатора на одном транзисторе

Цепочка из R1 и VT1 нам уже знакома из предыдущей схемы, это простейший стабилизатор, он задает стабилизированное напряжение на базе транзистора VT2. Транзистор в свою очередь выполняет функцию усилителя тока и является управляющим элементом в этой схеме. Например, при повышении входного напряжения, выходное напряжение будет стремится к возрастанию. Это приводит к понижению напряжения на эмиттерном переходе транзистора VT2, что приводит к его закрытию. При этом падение напряжения на участке эмиттер – коллектор возрастает на столько, что напряжение на стабилитроне уменьшается до исходного уровня. При понижении напряжения стабилизатор реагирует в обратном порядке.

Стабилизатор на транзисторах с защитой от КЗ

В практике радиолюбителя бывают ошибки и происходит короткое замыкание. Для уменьшения последствий в результате КЗ рассмотрим схему стабилизатора на два фиксированных напряжения и с защитой от короткого замыкания.

Как видим в данную схему добавлен транзистор V4, диоды V6 и V7, и параметрический стабилизатор состоящий из резистора R1, диодов V2, V3 оснащен переключателем S2.

Принцип работы защиты стабилизатора

Данная схема рассчитана на ток срабатывания от КЗ 250…300 мА, пока он не превышен, ток будет проходить через делитель напряжения состоящий из диода V7 и резистора R3. Путем подбора данного резистора можно регулировать порог срабатывания защиты. Диод V6 при этом будет закрыт и никакого влияния на работы оказывать не будет. При срабатывании защиты диод V7 закроется, а диод V6 откроется и зашунтирует подключений стабилитрон, при этом транзисторы V4 и V5 закроются. Ток на нагрузке упадет до 20…30 мА. Транзистор V5 следует устанавливать на теплоотвод.

Стабилизатор с регулируемым выходным напряжением

В ремонте или наладке электронных устройств необходимо иметь блок питания с регулируемым выходным напряжением. Принципиальная схема стабилизаторы с регулировкой по напряжению представлена ниже.

Принцип работы стабилизатора с регулировкой напряжения

Параметрический стабилизатор состоящий из R2 и V2 стабилизируют напряжение на переменном резисторе R3. Напряжение с этого резистора поступает на управляющий транзистор. Этот транзистор включен по схеме эмиттерного повторителя, нагрузкой которого является резистор R4. Напряжение с резистора R4 подается на регулирующий транзистор V4, нагрузкой которого уже выступает наше питаемое устройство. Регулировка напряжения осуществляется переменным резистором R3, если движок резистора находится в минимальном положении по схеме, то напряжения для открытия транзисторов V3 и V4 недостаточно и на выходе будет минимальное напряжение. При вращении движка, транзисторы начинают открываться, что увеличивает напряжение на нагрузке. При увеличении тока нагрузки, падение напряжения на резисторе R1 и лампа Н1 начинает загораться, при токе в 250 мА наблюдается тусклое свечение, а при токе в 500мА и выше яркое. Транзистор V4 следует устанавливать на теплоотвод. При повышенной нагрузке более 500 мА, следует как можно быстрее выключить блок питания, так как при длительной максимальной нагрузке выходят из строя диоды в выпрямительном мостике и транзистор V4.

Данные схемы при правильной сборке не нуждаются в наладке. Также их можно модернизировать на более большой ток и напряжения. Путем подбора радиоэлементов с нужными нам параметрами.

На этом все. Если у Вас есть замечания или предложения по данной статье, прошу написать администратору сайта.

Чаще всего радиотехнические устройства для своего функционирования нуждаются в стабильном напряжении, не зависящем от изменений сетевого питания и от тока нагрузки. Для решения этих задач используются компенсационные и параметрические устройства стабилизации.

Параметрический стабилизатор

Его принцип работы заключается в свойствах полупроводниковых приборов. Вольтамперная характеристика полупроводника – стабилитрона показана на графике.

Во время включения стабилитрона свойства подобны характеристике простого диода на основе кремния. Если стабилитрон включить в обратном направлении, то электрический ток сначала будет расти медленно, но при достижении некоторой величины напряжения наступает пробой. Это режим, когда малый прирост напряжения создает большой ток стабилитрона. Пробойное напряжение называют напряжением стабилизации. Во избежание выхода из строя стабилитрона, течение тока ограничивают сопротивлением. При колебании тока стабилитрона от наименьшего до наибольшего значения, напряжение не изменяется.

На схеме показан делитель напряжения, который состоит из балластного сопротивления и стабилитрона. К нему параллельно подключена нагрузка. Во время изменения величины питания меняется и ток резистора. Стабилитрон берет изменения на себя: меняется ток, а напряжение остается постоянным. При изменении резистора нагрузки ток изменится, а напряжение останется постоянным.

Компенсационный стабилизатор

Прибор, рассмотренный ранее очень простой по конструкции, но дает возможность питание прибора с током, который не превышает наибольшего тока стабилитрона. Вследствие этого используют приборы, стабилизирующие напряжение, и получившие название компенсационных. Они состоят из двух видов: параллельные и последовательные.

Называется прибор по методу подключения элементу регулировки. Обычно используются компенсационные стабилизаторы, относящиеся к последовательному виду. Его схема:

Элементом регулировки выступает транзистор, соединенный последовательно с нагрузкой. Напряжение выхода равняется разности значения стабилитрона и эмиттера, которое составляет несколько долей вольта, поэтому считается, что выходное напряжение равно стабилизирующему напряжению.

Рассмотренные приборы обоих типов имеют недостатки: невозможно получить точную величину напряжения выхода и производить регулировку во время работы. Если нужно создать возможность регулирования, то стабилизатор компенсационного вида изготавливают по схеме:

В этом приборе регулировка осуществляется транзистором. Основное напряжение выдает стабилитрон. Если напряжение выхода повышается, база транзистора получается отрицательной в отличие от эмиттера, транзистор откроется на большую величину и ток возрастет. Вследствие этого, напряжение отрицательного значения на коллекторе станет ниже, так же как и на транзисторе. Второй транзистор закроется, его сопротивление повысится, напряжение выводов повысится. Это приводит к снижению напряжения выхода и возвращению к бывшему значению.

При снижении напряжения выхода проходят подобные процессы. Отрегулировать точное напряжение выхода можно резистором настройки.

Стабилизаторы на микросхемах

Такие устройства в интегральном варианте имею повышенные характеристики параметров и свойств, которые отличаются от подобных приборов на полупроводниках. Также они обладают повышенной надежностью, небольшими габаритами и весом, а также небольшой стоимостью.

Последовательный стабилизатор

  • 1 – источник напряжения;
  • 2 – Элемент регулировки;
  • 3 – усилитель;
  • 5 – определитель напряжения выхода;
  • 6 – сопротивление нагрузки.

Элемент регулировки выступает в качестве изменяемого сопротивления, подключенного по последовательной схеме с нагрузкой. При колебании напряжения меняется сопротивление элемента регулировки так, что происходит компенсация таких колебаний. Воздействие на элемент регулировки производится по обратной связи, которая содержит элемент управления, источник основного напряжения и измеритель напряжения. Этот измеритель является потенциометром, с которого приходит часть напряжения выхода.

Обратная связь регулирует напряжение выхода, использующееся для нагрузки, напряжение выхода потенциометра становится равным основному напряжению. Колебания напряжения от основного создает некоторое падение напряжения на регулировке. Вследствие этого, измеряющим элементом в определенных границах можно осуществлять регулировку напряжения выхода. Если стабилизатор планируется изготовить на определенную величину напряжения, то измеряющий элемент создается внутри микросхемы с компенсацией температуры. При наличии большого интервала напряжения выхода, измеряющий элемент выполняется за микросхемой.

Параллельный стабилизатор

  • 1 – источник напряжения;
  • 2 –элемент регулирующий;
  • 3 – усилитель;
  • 4 – источник основного напряжения;
  • 5 – измерительный элемент;
  • 6 – сопротивление нагрузки.

Если сравнить схемы стабилизаторов, то прибор последовательного вида имеет повышенный КПД при неполной загрузке. Прибор параллельного вида расходует неизменную мощность от источника и выдает ее на элемент регулировки и нагрузку. Стабилизаторы параллельные рекомендуется использовать при неизменных нагрузках при полной загруженности. Стабилизатор параллельный не создает опасности при КЗ, последовательный вид при холостом ходе. При неизменной нагрузке оба прибора создают высокий КПД.

Стабилизатор на микросхеме с 3-мя выводами

Инновационные варианты схем стабилизаторов последовательного вида выполнены на 3-выводной микросхеме. Вследствие того, что есть всего лишь три вывода, их проще использовать в практическом применении, так как они вытесняют остальные виды стабилизаторов в интервале 0,1-3 ампера.

  1. U вх – необработанное напряжение входа;
  2. U вых –напряжение выхода.

Можно не использовать емкости С1 и С2, однако они позволяют оптимизировать свойства стабилизатора. Емкость С1 применяется для создание стабильности системы, емкость С2 нужна по той причине, что внезапное повышение нагрузки нельзя отследить стабилизатором. В таком случае поддержка тока осуществляется емкостью С2. Практически часто применяются микросхемы серии 7900 от компании Моторола, которые стабилизируют положительную величину напряжения, а 7900 – величину со знаком минус.

Микросхема имеет вид:

Для увеличения надежности и создания охлаждения стабилизатор монтируют на радиатор.

Стабилизаторы на транзисторах

На 1-м рисунке схема на транзисторе 2SC1061.

На выходе прибора получают 12 вольт, на напряжение выхода зависит прямо от напряжения стабилитрона. Наибольший допустимый ток 1 ампер.

При применении транзистора 2N 3055 наибольший допускаемый ток выхода можно повысить до 2 ампер. На 2-м рисунке схема стабилизатора на транзисторе 2N 3055, напряжение выхода, как и на рисунке 1 зависит от напряжения стабилитрона.

  • 6 В - напряжение выхода, R1=330, VD=6,6 вольт
  • 7,5 В - напряжение выхода, R1=270, VD = 8,2 вольт
  • 9 В - напряжение выхода, R1=180, Vd=10

На 3-м рисунке – адаптер для автомобиля – аккумуляторное напряжение в автомобиле равно . Для создания напряжения меньшего значения применяют такую схему.